AS
COMPUTER SCIENCE
7516/1

Paper 1

Mark scheme
June 2024

Version: 1.0 Final

2 46 A7 516/ 1/ MS

PMT

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant
questions, by a panel of subject teachers. This mark scheme includes any amendments made at the
standardisation events which all associates participate in and is the scheme which was used by them in
this examination. The standardisation process ensures that the mark scheme covers the students’
responses to questions and that every associate understands and applies it in the same correct way.
As preparation for standardisation each associate analyses a number of students’ scripts. Alternative
answers not already covered by the mark scheme are discussed and legislated for. If, after the
standardisation process, associates encounter unusual answers which have not been raised they are
required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and
expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark
schemes on the basis of one year’s document should be avoided; whilst the guiding principles of
assessment remain constant, details will change, depending on the content of a particular examination
paper.

No student should be disadvantaged on the basis of their gender identity and/or how they refer to the
gender identity of others in their exam responses.

A consistent use of ‘they/them’ as a singular and pronouns beyond ‘she/her’ or ‘he/him’ will be credited in
exam responses in line with existing mark scheme criteria.

Further copies of this mark scheme are available from aga.org.uk

Copyright information
AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own
internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third

party even for internal use within the centre.

Copyright © 2024 AQA and its licensors. All rights reserved.

PMT

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

PMT

AS Computer Science

Paper 1 (7516/1) — applicable to all programming languages A, B, C, D and E

June 2024

The following annotation is used in the mark scheme:

- means a single mark

I - means alternative response

/ - means an alternative word or sub-phrase
A. - means acceptable creditworthy answer
R. - means reject answer as not creditworthy
NE. - means not enough

l. - means ignore

DPT. - means ‘Don't penalise twice’. In some questions a specific error made by a candidate, if
repeated, could result in the loss of more than one mark. The DPT label indicates that this
mistake should only result in a candidate losing one mark, on the first occasion that the error is
made. Provided that the answer remains understandable, subsequent marks should be
awarded as if the error was not being repeated.

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The
descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as
instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the
descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in
the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it
meets this level, and so on, until you have a match between the level descriptor and the answer. With
practice and familiarity you will find that for better answers you will be able to quickly skip through the
lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in
small and specific parts of the answer where the student has not performed quite as well as the rest. If
the answer covers different aspects of different levels of the mark scheme you should use a best fit
approach for defining the level and then use the variability of the response to help decide the mark within
the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be
placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate
marks can help with this. The exemplar materials used during standardisation will help. There will be an
answer in the standardising materials which will correspond with each level of the mark scheme. This
answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer
with the example to determine if it is the same standard, better or worse than the example. You can then
use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and
assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be
exhaustive and you must credit other valid points. Students do not have to cover all of the points
mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

PMT

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

PMT

Examiners are required to assign each of the candidate’s responses to the most appropriate level
according to its overall quality, and then allocate a single mark within the level. When deciding upon a
mark in a level, examiners should bear in mind the relative weightings of the assessment objectives.

€g
In question 11.1, the marks available are as follows:

AO1 (knowledge) 1 mark
AO2 (analyse) 1 mark

In question 17.1, the marks available for the AO3 elements are as follows:

AO3 (design) 2 marks
AO3 (programming) 6 marks

In question 18.1, the marks available for the AO3 elements are as follows:

AQO3 (design) 3 marks
AQO3 (programming) 9 marks

Where a candidate’s answer only reflects one element of the AO, the maximum mark they can receive
will be restricted accordingly.

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

Section A
Qu Marks
01 5 marks for AO2 (application) 5
S1 S2 c R J X D1 D2 S
0 5 A A e O L R
"t 1 4 o™ | 0" | o™
"o "o1" 2 3 B AR B R I O b
T "'0o1" 3 2 B FR B R R
T ""1001" 4 1 B AR B O L B O b
"1 | '"01001" 5 0 Bl O R e O L B
0" | ""101001"
OUTPUT: "101001"
1 mark for each correct set of values in the correct sequence (boxed in red);
l. missing quotes
l. duplicated values in a column
If, after marking according to the boxed sections, fewer than 3 marks are awarded, 1 mark
can be awarded for each of the following, up to a maximum total of 3:
Column C completely correct;
Column R completely correct;
Columns J, X, D1, D2 and S all completely correct;
Max 4 if any errors

PMT

PMT

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

Qu Marks

02 | 1 | 2 marks for AO1 (understanding) 2

Global variables accessible to all parts of the program // local variables accessible only
in the program block/subroutine in which it was declared;

Local variables declared in subroutine // global variable declared in main program
block/outside subroutines;

Local variables only use memory/exist while the program block/subroutine (in which
they are declared) is executing;

Max 2

02 | 2 | 2 marks for AO1 (understanding) 2

Using local variables makes subroutine self-contained;

Using local variables aids modularisation;

Local variables use less memory // memory allocated to local variables can be reused
when subroutine not in use;

Variable names can be reused (in other parts of the program);

Code is easier to re-use in other programs;

A. Prevents unintended side-effects
A. Easier debugging/maintenance/testing

Max 2

03 3 marks for AO1 (understanding) 3

Can get an overview of (the structure of) the program // code is easier to understand;
Can break problem down into sub-tasks;

Can re-use subroutines/modules; A. less duplication of code

Can distribute (implementation of) subroutines/modules among team;

Can test subroutines/modules independently // quicker/easier to debug/maintain //
easier to locate errors;

Max 3

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

Qu

Marks

04

8 marks for AO3 (programming)

Mark as follows:
1. Correct variable declarations for Number1, Number2, Number, Count and

initialisation;

Note to examiners:

If a language allows variables to be used without explicit declaration, (eg Python), then
this mark should be awarded if the correct variables exist in the program code and the
first value they are assigned is of the correct data type.

2. Correct prompts "Enter an integer: ' and Numberl assigned integer value
entered by user and ""Enter another integer: " and Number2 assigned
integer value entered by user;

3. Correct IF THEN ELSE statement syntax allowed by the programming language

and correct condition;
Correct assignments to Number in THEN and ELSE part;

Loop iterates correct number of times;
Correct condition to output X;

Correct condition to output V;

Correct output within loop without line feed;

® NGO A

l. case and minor typos

Max 7 if code does not function correctly

04

Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 04.1.
Code for 04.1 must be sensible.

Screen capture showing:

Enter an integer: 4
Enter another integer: 99
L1IINIIIIXIIIINIIIIXI 7

PMT

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

PMT

Section B
Qu Marks
05 Mark is for AO1 (knowledge)

real/fTloat/single/double/decimal;

05

Mark is for AO2 (analyse)

AverageWaitingTime/AverageQLength;

R. if any additional code
R. if spelt incorrectly
l. case and spacing

06

Mark is for AO1 (knowledge)
String;
A. str

A. an arrayl/list of characters
l. case

06

Mark is for AO2 (analyse)

Answer / DataString/ ThisBuyerlD;

A. BLANK (Python only)

A. input, output, format (Java only)
A. BuyerlD

R. self_BuyerlD

R. if any additional code

R. if spelt incorrectly

I. case and spacing

Max 1

07

Mark is for AO2 (analyse)

FindFreeTill/ChangeSettings;

R. if any additional code
R. if spelt incorrectly
l. case and spacing

PMT

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

Qu Marks

08 Mark is for AO2 (analyse) 1

Otherwise there could be a serving time of 0;
Should round up to the (whole) number of time units needed;

A. by example such as:
if speed = 3, items = 8 then this will take more than 2 time units.

Max 1

09 2 marks for AO2 (analyse) 2

To finish serving all (waiting) buyers // there might be buyers left who haven’t been
served;

... and include them in the statistics; A. example of any statistic listed in the
simulation statistics output.

10 | 1 | Mark is for AO2 (analyse) 1
BuyerQ;
R. if any additional code

R. if spelt incorrectly
l. case and spacing

10 | 2 | Mark is for AO2 (analyse) 1

Stats/Tills/Data;

A. buyerInfo (Java only)
R. if any additional code

R. if spelt incorrectly

l. case and spacing

Max 1

10

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

PMT

Qu

Marks

11

Procedural composition

1 mark for AO1 (knowledge):

Combining subroutines to form compound subroutines // a subroutine that calls other
subroutines; A. another subroutine

1 mark for AO2 (analyse):

Several subroutines are combined to form the compound subroutine Serving //
FindFreeTill, ServeBuyer, UpdateStats, CalculateServingTime,
IncrementTimeWaiting, UpdateTills, OutputTillAndQueueStates are
combined into one subroutine Serving (Note: 2 or more subroutines must be
named);

Several subroutines are combined to form the compound subroutine
QueueSimulator //

ResetDataStrucutures, ChangeSettings, ReadInSimulationData,
OutputHeading, BuyerArrives, Serving, TillsBusy,
OutputTillAndQueueStates, OutputStats, UpdateTi l I's are combined
into one subroutine QueueSimulator (Note: 2 or more subroutines must be
named);

Max 1

Data composition

1 mark for AO1 (knowledge):
Combining data objects to form compound data;
1 mark for AO2 (analyse):

Several records of type Q_Node are combined to form the compound data structure
BuyerQ // (three) values/data items are combined to make a Q_Node // Buyer D,
WaitingTime and 1temsInBasket are combined to make a Q_Node // arrays;

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

Qu Marks
1 2 marks for AO2 (analyse)
Procedural composition
Some groups of subroutines need to be called in two places/more than one place // the
group of subroutines in Serving need to be called during the main simulation time
and also after buyers stop arriving;
Less code is required if only one compound subroutine needs to be called;
It improves understanding of code;
Data composition
Array elements are easier to address than individual variables;
The grouped data items/record can be manipulated as one unit;
Max 2
Award marks for either procedural composition or data composition or both.
12 2 marks for AO2 (analyse)
As index into (elements of) the Ti I I's data structure // to specify which array element
should be used;
Don’'t need to remember which element of the data structure is used when referring to it
/I code is easier to understand // the data structure can be changed / reordered and just
by changing this value the program will still work;
13 2 marks for AO2 (analyse)
All queue records (apart from the first one);
are moved one location (forward);
13 Mark is for AO2 (analyse)
Buyers moving forward in/towards the front of/up the queue;
14 Mark is for AO2 (analyse)

Divides Stats[TOTAL_Q] by Stats[TOTAL_Q_ OCCURENCE]:

12

PMT

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

PMT

Qu

Marks

14

2 marks for AO2 (analyse)

Stats[TOTAL_Q] has the length of the queue added onto it (in each time unit that

there is a non-empty queue);
Stats[TOTAL_Q_OCCURRENCE] is incremented in each time unit that there is a

(non-empty) queue;

DPT within 14.2 reference to an index such as TOTAL_Q rather than the data to which
it points, such as Stats[TOTAL_Q]

15

2 marks for AO3 (design)

Need a 2D data structure/list of lists to store the queues // add a field to Q_Node to
store which till the buyer is queuing for // add a queue/array/list to each Ti I I/element
of the Ti 1 I's data structure;

R. Use one array per Till l

Need code to allocate buyers to different queues // the code that moves someone out of
the queue to be served would need changing // the code that moves everyone in the
queue up would need changing // the code that displays the contents of the queue
would need changing;

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

Section C
Qu Marks
16 | 1 | 7 marks for AO3 (programming)

Marking guidance:
Evidence of AO3 programming — 7 marks:

Evidence of programming to look for in response:

—

. Constant declared and used as index (any index between 6 and 9) for Stats;

2. If queue length not less than 5 ... // if queue length equals 5 .. .;

3. ... Increment count of shuns in Stats data structure; R. if not within a selection
structure.

4. ... Qutput buyer number and message; R. if not within a selection structure.

5. ... If number of tills is less than MAX_TILLS ...; R. if not within a selection
structure.

6. Increment NoOFT i 1 Is; R. if not within a nested selection structure.

7. In OutputStats output number of total shuns with suitable message;

Max 6 if any errors

16 | 2

Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****

Must match code from 16.1, including prompts on screen capture matching those in
code.

Code for 16.1 must be sensible.

Screen capture showing:

The simulation statistics are:

The maximum queue length was: 5 buyers

The maximum waiting time was: 12 time units

33 buyers arrived during 50 time units

The average waiting time was: 4.2 time units

The average queue length was: 3.26 buyers

4 buyers did not need to queue

4 buyers turned away because the queue was too long

14

PMT

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

PMT

Qu

Marks

17

2 marks for AO3 (design) and 6 marks for AO3 (programming)
Marking guidance:

Evidence of AO3 design — 2 marks:

Evidence of design to look for in response:

1. Identify the need for a loop or equivalent to initialise the till speeds/re-use loop in
ResetDataStructures;

2. Recognise need to use T 1 Is data structure to calculate serving time in
CalculateServingTime;

Note: AO3 (design) points are for selecting appropriate techniques to use to solve the
problem, so should be credited whether the syntax of programming language
statements is correct or not and regardless of whether the solution works.

Evidence of AO3 programming — 6 marks:
Evidence of programming to look for in response:

3. Correctly calculate and store the default till speeds;
4. Correctly change the size of each elementin Tills;

5. Add Tills to parameter list of ChangeSettings definition and call // add
Tills to return value (Python) and assign in call to ChangeSettings in
QueueSimulator;

6. Correctly set up loop to set the speed for each till;

7. Output suitable message to user including till number and default till speed;

8. Store till speed entered by user in correct element of T 1 1S;

Max 7 if any errors

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

Qu

Marks

17

Mark is for AO3 (evaluate) 1
**** SCREEN CAPTURE ****

Must match code from 17.1, including prompts on screen capture matching those in
code.

Code for 17.1 must be sensible.

Screen capture showing:

WN P
gar o
R Oo
N O

** Start of queue **
*** End of queue ***

16

PMT

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

PMT

Qu

Marks

18

3 marks for AO3 (design) and 9 marks for AO3 (programming)

solution has been designed. The statements written may or may
not be syntactically correct and the subroutines will have very little
or none of the extra required functionality. It is unlikely that any of
the key design elements of the task have been recognised.

Level | Description Mark
Range
A line of reasoning has been followed to arrive at a logically
3 structured working or almost fully working programmed solution. 9-12
All of the appropriate design decisions have been taken.
There is evidence that a line of reasoning has been partially
2 followed. There is evidence of some appropriate design work. 5-8
This is a partially working programmed solution.
An attempt has been made to amend the subroutine Serving
and/or OutputTil lAndQueueStates. Some appropriate
programming statements have been written. There is little evidence
1 to suggest that a line of reasoning has been followed or that the 1-4

Marking guidance:

Evidence of AO3 design — 3 marks:

Evidence of design to look for in response:

1. Attempt to test for conditions to be served at express till (in Serving).

2. Recognise the need for a loop to find next buyer with < 10 items (in
ServeBuyerExpress).

3. Recognise the need to move buyer records in BuyerQ.

Note: AO3 (design) points are for selecting appropriate techniques to use to solve the
problem, so should be credited whether the syntax of programming language
statements is correct or not and regardless of whether the solution works.

Evidence of AO3 programming — 9 marks:

Evidence of programming to look for in response:

o~

Correct parameters and return values for ServeBuyerExpress.
Correct conditions for finding a buyer eligible for express till within loop. R. if multiple

buyers would be found in a single method call.

© o N

Extract buyer data only if a buyer with less than 10 items has been found.
Correctly move buyer records in BuyeraQ.

Output buyer ID.

. Call UpdateStats.

10. Call CalculateServingTime with till 0 parameter.
11. Call ServeBuyerExpress under correct conditions (QLength > 0 and till O free).
12.Till 0 stats included in OutputTil IAndQueueStates.

Max 11 if code does not function correctly

12

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

Qu

Marks

18

Mark is for AO3 (evaluate) 1

**** SCREEN CAPTURE ****

Must match code from 18.1, including prompts on screen capture matching those in
code.

Code for 18.1 must be sensible.

If Question 17 has been implemented the output should be:

8 B7(7)
B7 0 2

o 5 4 1

1 2 7 3

2 6 3 0

** Start of queue **
*** End of queue ***

If Question 17 has not been implemented the output should be:

8 B7(7)
B7 0O 3
0 4 5 2
1 1 8 1
2 4) 0
*

* Start of queue **
B6 3 25
*** End of queue ***

18

PMT

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

PMT

VB.Net
04 Sub MainQ) 8
Dim Numberl, Number2, Number, Count As Integer
Console.Write("Enter an integer: ')
Numberl = Console_ReadLine() “MP1
Console.Write("Enter another integer: ')
Number2 = Console.ReadLine() "MP2
IT Numberl > Number2 Then *“MP3
Number = Numberl \ Number2
Else
Number = Number2 \ Numberl <“MP4
End IFf
Count = 0
While Count <> Number "MP5
Count = Count + 1
IT (Count Mod 10) = O Then “"MP6
Console Write("'X™)
Else
If (Count Mod 5) = 0 Then “MP7
Console Write(''V™)
Else
Console. Write(''/™) “"MP8
End If
End If
End While
Console.ReadLine()
End Sub
16 indices for Stats data structure 7

Const MAX_Q_LENGTH As Integer = O

Const MAX_WAIT As Integer = 1

Const TOTAL_WAIT As Integer = 2

Const TOTAL_Q As Integer = 3

Const TOTAL_Q OCCURRENCE As Integer = 4
Const TOTAL_NO_WAIT As Integer =5

Const TOTAL_SHUNS As Integer = 6 "Q16 MP1

Sub BuyerArrives(Data(,) As Integer, BuyerQ() As Q_Node, ByRef QLength As
Integer, BuyerNumber As Integer, ByRef NoOfTills As Integer, Stats() As
Integer)

IT QLength < 5 Then "Q16 MP2
Console.WriteLine($" B{BuyerNumber}({Data(BuyerNumber, ITEMS)})'™)
BuyerJoinsQ(Data, BuyerQ, QLength, BuyerNumber)

Else
Stats(TOTAL_SHUNS) += 1 "Q16 MP3
IT NoOFTills < MAX_TILLS Then "Q16 MP5
NoOFfTills += 1 "Q16 MP6
End IFf
Console._WriteLine($" B{BuyerNumber} has shunned the queue.') "Q16 MP4
End IFf
End Sub

Sub OutputStats(Stats() As Integer, BuyerNumber As Integer, SimulationTime

As Integer)

Console.WriteLine("'The simulation statistics are:')

Console.WriteLine(" "

Console.WriteLine($"'The maximum queue length was: {Stats(MAX_Q_ LENGTH)}
buyers'™)

Console.WriteLine($"The maximum waiting time was: {Stats(MAX_WAIT)} time
units™)

Console.WriteLine($"{BuyerNumber} buyers arrived during {SimulationTime}
time units™)

19

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

Console.WriteLine($"The average waiting time was:
{Math_Round(Stats(TOTAL_WAIT) / BuyerNumber, 1)} time units")

I Stats(TOTAL_Q_OCCURRENCE) > 0 Then

Console._WriteLine($""'The average queue length was:

{Math.Round(Stats(TOTAL_Q) / Stats(TOTAL_Q OCCURRENCE), 2)} buyers'™)

End If

Console.WriteLine($"{Stats(TOTAL_NO_WAIT)} buyers did not need to queue')

Console.WriteLine($"{Stats(TOTAL_SHUNS)} buyers shunned the queue') "Q16
MP7

End Sub

17

Sub ResetDataStructures(Stats() As Integer, Tills(,) As Integer, BuyerQ() As
Q_Node)
For i As Integer = 0 To 9

Stats(i) = O
Next
For Count As Integer = O To MAX_TILLS

For i As Integer = 0 To 2

Tills(Count, i) =0

Next

Tills(Count, 3) = 7 - Count ~ Q17 MP1 MP3
Next

For 1 As Integer = 0 To MAX_Q_SIZE - 1
BuyerQ(i) .BuyerlID = BLANK
BuyerQ(i).WaitingTime = 0O
BuyerQ(i). ltemsInBasket = 0

Next

End Sub

Sub ChangeSettings(ByRef SimulationTime As Integer, ByRef NoOfTills As
Integer, Tills(,) As Integer) "Q17 MP5 part
SimulationTime = 10
NoOfTills = 2
Console.WriteLine("'Settings set for this simulation:™)
Console.WriteLine(" ==")
Console.WriteLine($"Simulation time: {SimulationTime}")
Console.WriteLine($"Tills operating: {NoOfTills}")
Console.WriteLine(" =="")
Console.WriteLine()
Console.Write("'Do you wish to change the settings? Y/N: ™)
Dim Answer As String = Console.ReadLine()
IT Answer = "Y' Then

Console.WriteLine($"Maximum simulation time is {MAX_TIME} time units™)

Console. Write('Simulation run time: ')

SimulationTime = Convert.Tolnt32(Console.ReadLine())

While SimulationTime > MAX_TIME Or SimulationTime < 1
Console.WriteLine($ "Maximum simulation time is {MAX_TIME} time

units™)
Console.Write('Simulation run time: ')
SimulationTime = Convert.Tolnt32(Console.ReadLine())

End While

Console.WriteLine($ 'Maximum number of tills is {MAX_TILLS}™)

Console._Write("Number of tills in use: ™)

NoOFTills = Convert.Tolnt32(Console.ReadLine())

Whille NoOFTills > MAX_TILLS Or NoOfTills < 1
Console.WriteLine($""Maximum number of tills is {MAX_TILLS}"™)
Console.Write("'Number of tills in use: ™)

NoOFTills = Convert.Tolnt32(Console.ReadLine())

End While

For count = 1 To NoOfTills * Q17 MP6
Console.WriteLine($"Enter operator speed for till {count}.™)
Console.Write($"Default value is {Tills(count, 3)}:") " Q17 MP7
Tills(count, 3) = Console.ReadLine() " Q17 MP8

Next

20

PMT

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

PMT

End If
End Sub

Sub CalculateServingTime(Tills(,) As Integer, ThisTill As Integer, NoOfltems
As Integer)
Dim ServingTime As Integer = (NoOfltems \ Tills(ThisTill, 3)) + 1 *° Q17

MP2
Tills(ThisTill, TIME_SERVING) = ServingTime
Console.WriteLine($"{ThisTill,6}{ServingTime,6}")
End Sub

Sub QueueSimulator()
Dim BuyerNumber As Integer = 0O
Dim QLength As Integer = 0
Dim Stats(9) As Integer
Dim Tills(MAX_TILLS, 3) As Integer " Q17 MP4
Dim Data(MAX_TIME, 1) As Integer
Dim BuyerQ(MAX_Q SIZE - 1) As Q_Node
Dim SimulationTime, NoOfTills, TimeToNextArrival, ExtraTime, TimeUnit As
Integer
ResetDataStructures(Stats, Tills, BuyerQ)
ChangeSettings(SimulationTime, NoOfTills, Tills) * MP5 part

18

Sub ServeBuyerExpress(ByRef BuyerQ() As Q Node, ByRef QLength As Integer,
ByRef Stats() As Integer, Byval Tills(,) As Integer)
Dim BuyerlID As String
Dim WaitingTime, ltems As Integer
Dim pos As Integer = 0
Whille pos < QLength - 1 And BuyerQ(pos).ltemslInBasket > 9 = Q18 MP2
MP5
pos += 1
End While
IT BuyerQ(pos).IltemslnBasket < 10 Then
BuyerID = BuyerQ(pos) .BuyerlID " Q18 MP6
WaitingTime = BuyerQ(pos) .-WaitingTime
Items = BuyerQ(pos).ltemslnBasket
For Count = pos To QLength - 1 " Q18 MP3 MP7
BuyerQ(Count) .BuyerlID = BuyerQ(Count + 1).BuyerlID
BuyerQ(Count) .WaitingTime = BuyerQ(Count + 1) .WaitingTime
BuyerQ(Count) . ItemsInBasket = BuyerQ(Count + 1).ltemslnBasket
Next
BuyerQ(QLength) .BuyerID = BLANK
BuyerQ(QLength) .WaitingTime = 0
BuyerQ(QLength).ltemsInBasket = 0
QLength -=1

Console._Write($"{BuyerlID,17}") " Q18 MP8
UpdateStats(Stats, WaitingTime) " Q18 MP9
CalculateServingTime(Tills, 0, Items) " Q18 MP10
End If
End Sub

Sub Serving(Tills(,) As Integer, NoOfTills As Integer, BuyerQ() As
Q_Node, ByRef QLength As Integer, Stats() As Integer)
Dim TillFree As Integer
Dim BuyerlID As String =
Dim WaitingTime As Integer = O
Dim ItemsInBasket As Integer = 0O
IT QLength > 0 And Tills(0, TIME_SERVING) = 0 Then * Q18 MP1 MP11
ServeBuyerExpress(BuyerQ, QLength, Stats, Tills) ~° Q18 MP4
End If
TillFree = FindFreeTill(Tills, NoOfTills)

12

21

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

While TillFree <> -1 And QLength > O
ServeBuyer (BuyerQ, QLength, BuyerlID, WaitingTime, ltemslnBasket)
UpdateStats(Stats, WaitingTime)
CalculateServingTime(Tills, TillFree, ltemslnBasket)
TillFree = FindFreeTill(Tills, NoOfTills)

End While

IncrementTimeWaiting(BuyerQ, QLength)

UpdateTills(Tills, NoOfTills)

IT QLength > 0 Then
Stats(TOTAL_Q_OCCURRENCE) += 1
Stats(TOTAL_Q) += QLength

End If

IT QLength > Stats(MAX_Q LENGTH) Then
Stats(MAX_Q_LENGTH) = QLength

End If

OutputTillAndQueueStates(Tills, NoOfTills, BuyerQ, QLength)

End Sub

Sub OutputTillAndQueueStates(Tills(,) As Integer, NoOfTills As Integer,

BuyerQ() As Q Node, QLength As Integer)

For i As Integer = 0 To NoOfTills " Q18 MP12

Console WriteLine($"{i,36}{Tills(i, TIME_IDLE) ,5H{Tills(i,

TIME_BUSY) ,5}{Tills(i, TIME_SERVING),6}")

Next

Console _WriteLine("
** Start of queue **')

For i As Integer = 0 To QLength - 1

Console _WriteLine($"{BuyerQ(i) .BuyerlID,57}{BuyerQ(i).WaitingTime, 7}{Buyer
Q(i).ltemsInBasket,6}'")

Next

Console _WriteLine("
*** End of queue ***™)

End Sub

22

PMT

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

PMT

Python 3
04 | 1 | Numberl = int(input(Enter an integer: ")) # MP1 8
Number2 = int(input("'Enter another integer: ")) # MP2
it Numberl > Number2: # MP3

else:

Count = O
while Count '= Number: # MP5

Number = Numberl // Number2

Number = Number2 // Numberl # MP4

Count += 1

if Count % 10 == 0: # MP6
print(*X", end="")

elif Count % 5 == 0: # MP7
print(*V®, end="")

else:
print(*/", end="") # MP8

16 |1 | # indices for Stats data structure 7
MAX Q LENGTH = O
MAX WAIT = 1
TOTAL_WAIT = 2
TOTAL_Q = 3
TOTAL_Q OCCURENCE = 4
TOTAL_NO WAIT =5
TOTAL_SHUNS = 6 # Q16 MP1
def BuyerArrives(Data, BuyerQ, QLength, BuyerNumber, NoOfTills, Stats):
if QLength < 5:# Q16 MP2
print(f" B{BuyerNumber}({Data[BuyerNumber][ITEMS]})'™)
BuyerQ, QLength = BuyerJoinsQ(Data, BuyerQ, QLength, BuyerNumber)
else:
Stats[TOTAL_SHUNS] += 1 # Q16 MP3
print(f'Buyer {BuyerNumber} shunned the queue™) # Q16 MP4
if NoOFfTills < MAX_TILLS: # Q16 MP5
NoOfTills += 1 # Q16 MP6
return BuyerQ, QLength, NoOfTills, Stats
def OutputStats(Stats, BuyerNumber, SimulationTime):
print(""The simulation statistics are:")
pr.nt("::::::::::::::::::::::::::::::")
print(f'The maximum queue length was: {Stats[MAX _Q LENGTH]} buyers')
print(f"The maximum waiting time was: {Stats[MAX WAIT]} time units"™)
print(f"{BuyerNumber} buyers arrived during {SimulationTime} time units™)
AverageWaitingTime = round(Stats[TOTAL _WAIT] 7/ BuyerNumber, 1)
print(f'The average waiting time was: {AverageWaitingTime} time units')
if Stats[TOTAL_Q_OCCURRENCE] > O:
AverageQLength = round(Stats[TOTAL_Q] / Stats[TOTAL_Q OCCURRENCE], 2)
print(f"The average queue length was: {AverageQLength} buyers'™)
print(f'{Stats[TOTAL_NO _WAIT]} buyers did not need to queue')
print(f'{Stats[TOTAL_SHUNS]} buyers turned away because the queue was too
long™) # Q16 MP7
17 | 1 | def ResetDataStructures(): 8

Stats = [0, 0, 0, 0, O, 0, 0, O, O, O]
Tills = [[0, O, 0, 0] for i in range(MAX_TILLS + 1)] # Q17 MP4
for Count in range(MAX_TILLS + 1): # Q17 MP1

Tills[Count][3] = 7 - Count # Q17 MP3

23

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

BuyerQ = [Q _Node() for i in range(MAX_Q_SIZE)]
return Stats, Tills, BuyerQ

def ChangeSettings(Tills): # Q17 MP5 part
SimulationTime = 10
NoOfTills = 2
print(*'Settings set for this simulation:')

print(f'Simulation time: {SimulationTime}'")
print(F'Tills operating: {NoOFfTills}"")

Answer = input(*'Do you wish to change the settings? Y/N: ')
if Answer == "Y":
print(f'Maximum simulation time is {MAX_TIME} time units'™)
SimulationTime = int(input('Simulation run time: "))
while SimulationTime > MAX_ TIME:
print(f'Maximum simulation time is {MAX_TIME} time units')
SimulationTime = int(input("'Simulation run time: "))
print(f"Maximum number of tills is {MAX TILLS}™)
NoOFfTills = int(input("’'Number of tills In use: ™))
while NoOfTills > MAX_TILLS:
print(f'Maximum number of tills is {MAX_TILLS}™)
NoOFfTills = int(input("'Number of tills In use: ™))
for Count in range(l, NoOfTills + 1): # Q17 MP6
Tills[Count][3] = int(input(f'Enter the till speed (items processed
per time unit (default {Tills[Count][3]}) for till {Count}): ")) # Q17 MP7
MP8
return Tills, SimulationTime, NoOfTills

def CalculateServingTime(Tills, ThisTill, NoOfltems):
ServingTime = (NoOfltems // Tills[ThisTill][3]) + 1 # Q17 MP2
Tills[ThisTillIJ[TIME_SERVING] = ServingTime
print(fF'{ThisTill:>6d}{ServingTime:>6d}'")
return Tills

def QueueSimulator():
BuyerNumber = 0O
QLength = 0
Stats, Tills, BuyerQ = ResetDataStructures()
Tills, SimulationTime, NoOfTills = ChangeSettings(Tills) # Q17 MP5 part

A. TILL_SPEED instead of 3 as index

Alternative answer
def ResetDataStructures():
Stats = [0, O, O, O, O, O, O, O, 0, O]
Tills = [[0, 0, O, 7 - i] for i in range(MAX_TILLS + 1)] # Q17 MP1 MP4
Q17 MP3
BuyerQ = [Q_Node() for i1 in range(MAX_Q_SIZE)]
return Stats, Tills, BuyerQ

18

def OutputTillAndQueueStates(Tills, NoOfTills, BuyerQ, QLength): 12

for 1 in range(0, NoOfTills + 1): # Q18 MP12

print(F"{i:>36d}{Tills[i]1[TIME_IDLE] :>5d}{TilIs[i][TIME_BUSY]:>5d}{Tills[i][TIME_SERVING]:>6d}'")
print(* ** Start of queue **')
for i1 in range(QLength):
print(F*{BuyerQ[i] -BuyerlID:>57s}{BuyerQ[i].WaitingTime:>7d}{BuyerQ[i]. ItemsIinBasket:>6d}"")
print(** *** End of queue ***')
print("'-—-—-———— - ")

24

PMT

PMT

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

def ServeBuyerExpress (Tills, BuyerQ, QLength, Stats):
find a buyer with fewer than 10 items
Found = False
EndOfQ = False
NextInQ = O
while not Found and not EndOfQ: # Q18 MP2 # MP5
if BuyerQ[NextInQ].ItemsInBasket < 10:
Found = True
else:
NextInQ += 1
if NextInQ == QLength:
EndOfQ = True
if Found:
move buyer out # Q18 MP6
ThisBuyerlID = BuyerQ[NextInQ].-BuyerlID
WaitingTime = BuyerQ[NextInQ].WaitingTime
ItemsInBasket = BuyerQ[NextInQ]. ltemslnBasket
close gap in queue
for Count in range(NextInQ, QLength): # Q18 MP3 # Q18 MP7
BuyerQ[Count] .-BuyerlID = BuyerQ[Count + 1].BuyerlD
BuyerQ[Count] .-WaitingTime = BuyerQ[Count + 1]._WaitingTime
BuyerQ[Count] . ItemsInBasket = BuyerQ[Count + 1].IltemsInBasket
blank last element
BuyerQ[QLength] -BuyerlID = BLANK
BuyerQ[QLength] -WaitingTime = O
BuyerQ[QLength] . ItemsInBasket = O
QLength -= 1
print(f'{ThisBuyerlD:>17s}", end="") # Q18 MP8
update stats #Q18 MP9
Stats = UpdateStats(Stats, WaitingTime)
serve buyer at till 0 # Q18 MP10
Tills = CalculateServingTime(Tills, 0, ltemslnBasket)
return Tills, BuyerQ, QLength, Stats

def Serving(Tills, NoOfTills, BuyerQ, QLength, Stats):
if QLength > 0: # Q18 MP1
if Tills[O][TIME_SERVING] == 0: # Q18 MP11
Tills, BuyerQ, QLength, Stats = ServeBuyerExpress (Tills, BuyerQ, QLength,
Stats) # Q18 MP4
TillFree = FindFreeTill(Tills, NoOfTills)
whille TillFree = -1 and QLength > O:
BuyerQ, QLength, BuyerlID, WaitingTime, ltemslnBasket = ServeBuyer(BuyerQ,
QLength)
Stats = UpdateStats(Stats, WaitingTime)
Tills = CalculateServingTime(Tills, TillFree, ltemslnBasket)
TillFree = FindFreeTill(Tills, NoOfTills)
BuyerQ = IncrementTimeWaiting(BuyerQ, QLength)
Tills = UpdateTills(Tills, NoOfTills)
if QLength > O:
Stats[TOTAL_Q_OCCURRENCE] += 1
Stats[TOTAL_Q] += QLength
if QLength > Stats[MAX_Q_LENGTH]:
Stats[MAX_Q_LENGTH] = QLength
OutputTillAndQueueStates(Tills, NoOfTills, BuyerQ, QLength)
return Tills, NoOfTills, BuyerQ, QLength, Stats

25

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

Python 2
04 |1 import sys
Numberl = int(raw_input("'Enter an integer: ™)) # MP1
Number2 = int(raw_input("'Enter another integer: ')) # MP2
if Numberl > Number2: # MP3
Number = Numberl // Number2
else:
Number = Number2 // Numberl # MP4
Count = 0
while Count != Number: # MP5
Count += 1
if Count % 10 == 0: # MP6

sys.stdout.write("X")

elif Count % 5 == 0: # MP7
sys.stdout_write("V")

else:
sys.stdout.write("/") # MP8

16 |1 | # Indices for Stats data structure
MAX_Q LENGTH = 0
MAX_WAIT = 1
TOTAL_WAIT = 2
TOTAL_Q = 3
TOTAL_Q_OCCURRENCE = 4
TOTAL_NO_WAIT = 5
TOTAL_SHUNS = 6 # Q16 MP1
def BuyerArrives(Data, BuyerQ, QLength, BuyerNumber, NoOfTills, Stats):
if QLength < 5:# Q16 MP2
sys.stdout.write("™ B{0}({1})".format(BuyerNumber,
Data[BuyerNumber][1TEMS]))
print
BuyerQ, QLength = BuyerJoinsQ(Data, BuyerQ, QLength, BuyerNumber)
else:
Stats[TOTAL_SHUNS] += 1 # Q16 MP3
print "Buyer ', BuyerNumber, " shunned the queue' # Q16 MP4
if NoOFTills < MAX_TILLS: # Q16 MP5
NoOfTills += 1 # Q16 MP6
return BuyerQ, QLength, NoOfTills, Stats
def OutputStats(Stats, BuyerNumber, SimulationTime):
print "The simulation statistics are:"
print oo oo—o—ooo—o—ooo—o—o—o——oo——————————=
print "The maximum queue length was: ', Stats[MAX_ Q LENGTH], ' buyers"
print "The maximum waiting time was: ', Stats[MAX WAIT], " time units"
print BuyerNumber, " buyers arrived during ", SimulationTime, " time
units"
print "The average waiting time was:', round(Stats[TOTAL WAIT]*1.0/
BuyerNumber, 1), "time units"
if Stats[TOTAL_Q_OCCURRENCE] > O:
print "The average queue length was:", round(Stats[TOTAL_Q]*1.0 /
Stats[TOTAL_Q OCCURRENCE], 2), "buyers"
print Stats[TOTAL_NO_WAIT], " buyers did not need to queue"
print Stats[TOTAL_SHUNS], " buyers turned away because the queue was too
long" # Q16 MP7
17 | 1 | def ResetDataStructures():

Stats = [0, O, O, O, O, O, O, O, O, O]
Tills = [[0, 0, O, O] for i in range(MAX_TILLS + 1)] # Q17 MP4
for Count in range(MAX_TILLS + 1): # Q17 MP1

26

PMT

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

PMT

Tills[Count][3] = 7 - Count # Q17 MP3
BuyerQ = [Q Node() for i in range(MAX_Q_SIZE)]
return Stats, Tills, BuyerQ

def ChangeSettings(Tills): # Q17 MP5 part
SimulationTime = 10
NoOfTills = 2
print "Settings set for this simulation:"

print oo —oo—o—oo—o-o—o-—o———o—————————=='
print "Simulation time: ", SimulationTime
print "Tills operating: ", NoOfTills
print VMoo=
print

Answer = raw_input('Do you wish to change the settings? Y/N: ')
if Answer == "Y":
print "Maximum simulation time is ', MAX_TIME, " time units”
SimulationTime = int(raw_input(”Simulation run time: '))
while SimulationTime > MAX _TIME or SimulationTime < 1:
print "Maximum simulation time is ", MAX_TIME, ™ time units”
SimulationTime = int(raw_input("Simulation run time: '))
print "Maximum number of tills is ", MAX_TILLS
NoOFfTills = int(raw_input("'Number of tills in use: ™))
while NoOfTills > MAX _TILLS or NoOfTills < 1:
print "Maximum number of tills is ", MAX_TILLS
NoOFfTills = int(raw_input("'Number of tills in use: ™))
for Count in range(l, NoOfTills + 1): # Q17 MP6
sys.stdout.write("Enter the till speed (items processed per time
unit (default {0}) for till {1}: " .format(Tills[Count][3], Count)) # Q17
MP7
Tills[Count][3] = int(raw_input()) # Q17 MP8
return Tills, SimulationTime, NoOfTills

def CalculateServingTime(Tills, ThisTill, NoOfltems):
ServingTime = (NoOfltems // Tills[ThisTill][3]) + 1 # Q17 MP2
Tills[ThisTillIJ[TIME_SERVING] = ServingTime
sys.stdout.write("{0:>6}{1:>6}" . format(ThisTill, ServingTime))
print
return Tills

def QueueSimulator():
BuyerNumber = 0
QLength = 0
Stats, Tills, BuyerQ = ResetDataStructures()
Tills, SimulationTime, NoOfTills = ChangeSettings(Tills) # Q17 MP5 part

18

def ServeBuyerExpress (Tills, BuyerQ, QLength, Stats):
Find a buyer with fewer than 10 items
Found = False
EndOfQ = False
NextInQ = 0O
while not Found and not EndOfQ: # Q18 MP2 # Q18 MP5
if BuyerQ[NextInQ].ltemslnBasket < 10:
Found = True
else:
NextInQ += 1
if NextInQ == QLength:
EndOfQ = True
if Found:
move buyer out # Q18 MP6
ThisBuyerlID BuyerQ[NextInQ] -BuyerlD
WaitingTime BuyerQ[NextInQ] -WaitingTime

12

27

PMT

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

ItemsInBasket = BuyerQ[NextInQ]. ltemsInBasket

close gap in queue

for Count in range(NextInQ, QLength): # Q18 MP3 # Q18 MP7
BuyerQ[Count] .BuyerID = BuyerQ[Count + 1].BuyerlD
BuyerQ[Count] .WaitingTime = BuyerQ[Count + 1].WaitingTime
BuyerQ[Count] . ltemsInBasket = BuyerQ[Count + 1].l1temslnBasket

blank last element

BuyerQ[QLength] .BuyerID = BLANK

BuyerQ[QLength].WaitingTime = 0O

BuyerQ[QLength]. ItemsInBasket = 0O

QLength -= 1

sys.stdout.write("{0:>17}" .format(ThisBuyerlID)) # Q18 MP8

update stats # Q18 MP9

Stats = UpdateStats(Stats, WaitingTime)

serve buyer at till 0 # Q18 MP10

Tills = CalculateServingTime(Tills, 0, ItemsInBasket)

return Tills, BuyerQ, QLength, Stats

def Serving(Tills, NoOfTills, BuyerQ, QLength, Stats):
if QLength > 0: # Q18 MP1
if Tills[O][TIME_SERVING] == 0: # Q18 MP11
Tills, BuyerQ, QLength, Stats = ServeBuyerExpress (Tills, BuyerQ,
QLength, Stats) # Q18 MP4
TillFree = FindFreeTill(Tills, NoOfTills)
while TillFree != -1 and QLength > O:
BuyerQ, QLength, BuyerlID, WaitingTime, ltemslnBasket =
ServeBuyer(BuyerQ, QLength)
Stats = UpdateStats(Stats, WaitingTime)
Tills = CalculateServingTime(Tills, TillFree, ItemsInBasket)
TillFree = FindFreeTill(Tills, NoOfTills)
BuyerQ = IncrementTimeWaiting(BuyerQ, QLength)
Tills = UpdateTills(Tills, NoOfTills)
if QLength > O:
Stats[TOTAL_Q_OCCURRENCE] += 1
Stats[TOTAL_Q] += QLength
if QLength > Stats[MAX_Q LENGTH]:
Stats[MAX_Q LENGTH] = QLength
OutputTillAndQueueStates(Tills, NoOfTills, BuyerQ, QLength)
return Tills, NoOfTills, BuyerQ, QLength, Stats

def OutputTillAndQueueStates(Tills, NoOfTills, BuyerQ, QLength):
for i1 in range(0, NoOfTills + 1): # Q18 MP12
sys.stdout.write("{0:>36}{1:>5}{2:>5}{3:>6}" . format(i, Tills[i][TIME_IDLE],
Tills[i][TIME_BUSY], Tills[i][TIME_SERVING]))
print
print * ** Start of queue **"
for 1 in range(QLength):
sys.stdout.write("{0:>57}1:>7}{2:>6}" . format(BuyerQ[i]-.BuyerlD, BuyerQ[i].-WaitingTime,
BuyerQ[i]- ItemsInBasket))
print
print " *** End of queue ***"
print M- "

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

PMT

Pascal

var
Number, Numberl, Number2, Count:
begin
write("Enter an integer: %);
readln(Numberl); // MP1
write("Enter another integer: *);
readln(Number2); // MP2
iT Numberl > Number2 then // MP3
Number := Numberl div Number2
else
Number :=
Count := O;
while Count <> Number do // MP5
begin
inc(Count);
if Count mod 10 = 0 then
write("X")
else
if Count mod 5 = 0 then
write("V")
else
write(™/%);
end;
readln;
end.

04 (1

Number2 div Numberl; //

// MP6

// NP7

// MP8

integer;

MP4

16 | 1 // indices for Stats data structure
MAX_Q_LENGTH = O;

MAX_WAIT = 1;

TOTAL_WAIT = 2;

TOTAL_Q = 3;

TOTAL_Q_OCCURRENCE = 4;
TOTAL_NO_WAIT = 5;

TOTAL_SHUNS = 6; // Q16 MP1

integer; BuyerNumber:

writeIn("Buyer®, BuyerNumber,
if NoOFfTills < MAX_TILLS then
inc(NoOFfTills); // Q16 MP6
end;
end;

SimulationTime: integer);
var

AverageWaitingTime, AverageQLength:
begin

*(", Data[BuyerNumber,

procedure OutputStats(var Stats: TStats; BuyerNumber:

procedure BuyerArrives(var Data: TData; var BuyerQ:TBuyerQ; var QLength:
integer; var NoOfTills:

integer; var Stats: TStats);

ITEMS], ")");

begin
if QLength < 5 then // Q16 MP2
begin
writeln(®* BT", BuyerNumber,
BuyerJoinsQ(Data, BuyerQ, QLength, BuyerNumber);
end
else
begin

inc(Stats[TOTAL_SHUNS]); // Q16 MP3

* shunned the queue®); // Q16 MP4
// Q16 MP5

integer;

real ;

writeIn("The simulation statistics are:");
Writeln(':::::::::::::::::::::::::::

29

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

writeIn("The maximum queue length was: ", Stats[MAX_Q_LENGTH], *
buyers®);
writeIn("The maximum waiting time was: ", Stats[MAX WAIT], " time
units®);
writeIn(BuyerNumber, * buyers arrived during ", SimulationTime, " time
units®);
AverageWaitingTime := Stats[TOTAL_WAIT] / BuyerNumber;
writeIn("The average waiting time was: ", AverageWaitingTime:2:1, " time
units”®);
ifT Stats[TOTAL_Q_OCCURRENCE] > O then
begin
AverageQLength := Stats[TOTAL_Q] / Stats[TOTAL_Q OCCURRENCE];
writeIn("The average queue length was: ", AverageQLength:2:2, *
buyers®);
end;
writeIn(Stats[TOTAL_NO WAIT], " buyers did not need to queue®);
writeln (Stats[TOTAL_SHUNS], " buyers turned away because the queue was
too long®); // Q16 MP7
end;

17

procedure ResetDataStructures(var Stats: TStats; var Tills: TTills; var
BuyerQ: TBuyerQ);
var
Count, i: integer;
begin
for i := 0 to 9 do
begin
Stats[i] := O;
end;
for Count :
begin
for i := 0 to 2 do
begin
Tills[Countl, i] := 0;
end;
Tills[Count, 3] := 7 - Count; // Q17 MP1, MP3, MP4
end;
for i := 0 to MAX_Q _SIZE - 1 do
begin
BuyerQ[i1]-BuyerlID := BLANK;
BuyerQ[i]-WaitingTime := O;
BuyerQ[i]-l1temsInBasket := 0;
end;
end;

0 to MAX_TILLS do

procedure ChangeSettings(var SimulationTime: integer; var NoOfTills:
integer; var Tills: TTills); // Q17 MP5 part

var Answer: char;
Count: integer;

begin
SimulationTime := 10;
NoOFfTills := 2;
writeIn("Settings set for this simulation:");
Writeln(':::::::::::::::::::::::::::::::::');
writeIn("Simulation time: ", SimulationTime);
writeIn("Tills operating: ", NoOfTills);
Writeln(':::::::::::::::::::::::::::::::::');
writeln;
write("Do you wish to change the settings? Y/N: *);

30

PMT

PMT

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

readln(Answer);
if Answer = "Y" then
begin

writeIn("Maximum simulation time is ", MAX_TIME, " time units");
write("Simulation run time: 7);
readIn(SimulationTime);
while (SimulationTime > MAX TIME) or (SimulationTime < 1) do
begin
writeIn("Maximum simulation time is ", MAX TIME, " time
units®);
write("Simulation run time: 7);
readIn(SimulationTime);
end;
writeIn("Maximum number of tills is ", MAX _TILLS);
write("Number of tills in use: 7);
readln(NoOfTills);
while (NoOFfTills > MAX_TILLS) or (NoOfTills < 1) do
begin
writelIn(*Maximum number of tills is °, MAX TILLS);
write("Number of tills in use: ");
readln(NoOfTills);
end;
for Count := 1 to NoOfTills do // Q17 MP6
begin
write("Enter the till speed (items processed per time unit
(default ", Tills[Count, 3], ")) for till ", Count, ": "); // Q17 MP7
readIn(Tills[Count, 3]); // Q17 MP8
end;
end;
end;

procedure CalculateServingTime(var Tills: TTills; ThisTill: integer;
NoOfltems: integer);
var
ServingTime: integer;
begin
ServingTime := (NoOfltems DIV Tills[ThisTill, 3]) + 1; // Q17 MP2
Tills[ThisTil][TIME_SERVING] := ServingTime;
writeIn(ThisTill:6, ServingTime:6);
end;

type
Q_Node = record
BuyerlID: string;
WaitingTime: integer;
ItemsinBasket: integer;
end;
TStats = array[0 .. 9] of integer;
TTills = array[0O .. MAX_TILLS, O .. 3] of integer; // Q17 MP4
TBuyerQ = array[0 .. MAX_Q _SIZE - 1] of Q_Node;
TData = array[0 .. MAX_TIME, O .. 1] of integer

procedure QueueSimulator();
var

BuyerNumber, QLength, SimulationTime, NoOfTills, TimeToNextArrival,
TimeUnit, ExtraTime: integer;

Stats: TStats;

Tills: TTills;

BuyerQ: TBuyerQ;

31

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

Data:
begin

BuyerNumber := 0;

QLength := 0;

ResetDataStructures(Stats, Tills, BuyerQ);
ChangeSettings(SimulationTime, NoOfTills, Tills); // Q17 MP5 part

TData;

18

procedu

QLength

var
Found

NextInQ, WaitingTime, ltemsInBasket, Count: integer;
ThisBuyerlID: string;

begin

// find a buyer with fewer than 10 items

Found

EndOfQ := False;
NextInQ :-= O;

while not Found and not EndOfQ do // Q18 MP2 // Q18 MP5
if BuyerQ[NextInQ].ItemsInBasket < 10 then
begin
Found := True;
end
else
begin

end;
if Found then

beg

// move buyer out // MP6
ThisBuyerID := BuyerQ[NextInQ].BuyerlD;

WaitingTime :=

ItemsinBasket := BuyerQ[NextInQ].ltemslInBasket;

// close gap In queue

for Count := NextInQ to QLength do // Q18 MP3 // Q18 MP7

// blank last element

BuyerQ[QLength] .-BuyerlID := BLANK;
BuyerQ[QLength] .WaitingTime := O;
BuyerQ[QLength]. ItemslnBasket := O;
dec(QLength);

write(ThisBuyerlD: 17); // Q18 MP8

// update stats // Q18 MP9
UpdateStats(Stats, WaitingTime);

// serve buyer at till 0 // Q18 MP10
CalculateServingTime(Tills, 0, ltemslnBasket);

end
end;

procedure OutputTillAndQueueStates(var Tills: TTills; NoOfTills:

integer
var
i:
begin

re ServeBuyerExpress (var Tills: TTills; var BuyerQ: TBuyerQ; var 12
: Integer; var Stats: TStats);

, EndOfQ: boolean;

:= False;

inc(NextInQ);
if NextInQ = QLength then
begin
EndOfQ := True;
end;

in

BuyerQ[NextInQ].WaitingTime;

begin
BuyerQ[Count] .BuyerlID := BuyerQ[Count + 17].BuyerlD;
BuyerQ[Count] .WaitingTime := BuyerQ[Count + 1].WaitingTime;
BuyerQ[Count]. ltemsInBasket := BuyerQ[Count + 1].IltemslnBasket;
end;

; var BuyerQ: TBuyerQ; QLength: integer);

integer;

32

PMT

PMT

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

for i := 0 to NoOfTills do // Q18 MP12
writeIn(i:36, Tills[i, TIME_IDLE]:5, Tills[i, TIME_BUSY]:5, Tills[i,
TIME_SERVING]:6);
writeIn(” ** Start
of queue **%);
for i := 0 to QLength - 1 do
writeIn(BuyerQ[i]-BuyerlID:57, BuyerQ[i]-WaitingTime:7,
BuyerQ[i]- ItemsinBasket:6);
writeIn(” *** End
of queue ***%);
writeln(F----—--—— -

et T

procedure Serving(var Tills: TTills; var NoOfTills: integer; var BuyerQ:
TBuyerQ; var QLength: integer; var Stats: TStats);
var
TillFree: integer;
BuyerlID: string;
WaitingTime, ltemsinBasket: integer;
begin
if QLength > 0 then // Q18 MP1
if Tills[O, TIME_SERVING] = O then // Q18 MP11
ServeBuyerExpress (Tills, BuyerQ, QLength, Stats); // Q18 MP4
TillFree := FindFreeTill(Tills, NoOfTills);
while (TillFree <> -1) and (QLength > 0) do
begin
ServeBuyer(BuyerQ, QLength, BuyerlID, WaitingTime, ltemslnBasket);
UpdateStats(Stats, WaitingTime);
CalculateServingTime(Tills, TillFree, ltemsInBasket);
TillFree := FindFreeTill(Tills, NoOfTills);
end;
IncrementTimeWaiting(BuyerQ, QLength);
UpdateTills(Tills, NoOfTills);
if QLength > 0 then
begin
inc(Stats[TOTAL_Q_OCCURRENCE]);
Stats[TOTAL_Q] := Stats[TOTAL_Q] + QLength;
end;
if QLength > Stats[MAX_Q LENGTH] then
begin
Stats[MAX_Q_LENGTH] := QLength;
end;
OutputTillAndQueueStates(Tills, NoOfTills, BuyerQ, QLength);
end;

33

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

C#

04

Console._Write(Enter an integer: ');

int Numberl = Convert.Tolnt32(Console.ReadLine()); // MP1
Console.Write("Enter another integer: ");

int Number2 = Convert.Tolnt32(Console.ReadLine()); // MP2
int Number;

it (Numberl > Number2) // MP3

Number = Numberl / Number2;
Y
else

Number = Number2 7/ Numberl; // MP4
Y

int Count = O;
while (Count != Number) // MP5

{
Count++;
iT (Count % 10 == 0) // MP6
{
Console Write("'X'");
}
else
{
iT (Count % 5 == 0) // MP7
{
Console Write('V'");
}
else
{
Console . Write(''/'"); // MP8
}
}
}

Console.ReadLine();

16

// indices for Stats data structure
const int MAX_Q LENGTH = O;
const int MAX_WAIT = 1;
const int TOTAL_WAIT = 2;
const int TOTAL Q = 3;
const int TOTAL_Q OCCURRENCE = 4;
const int TOTAL_NO _WAIT = 5;
const int TOTAL_SHUNS = 6; // Q16 MP1

public static void BuyerArrives(int[,] Data, Q Node[] BuyerQ, ref int
QLength, int BuyerNumber, ref int NoOfTills, int[] Stats)

if (QLength < 5) // Q16 MP2

Console._WriteLine($" B{BuyerNumber}({Data[BuyerNumber,

ITEMS]I})™);
BuyerJoinsQ(Data, BuyerQ, ref QLength, BuyerNumber);

}

else

Stats[TOTAL_SHUNS]++; // Q16 MP3

34

PMT

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

PMT

Console._WriteLine($" B{BuyerNumber} has shunned the queue.™);
//Q16 MP4
if (NoOFTills < MAX_TILLS) // Q16 MP5

NoOFfTills++; // Q16 MP6

}
}
}

public static void OutputStats(int[] Stats, int BuyerNumber, int
SimulationTime)

double AverageWaitingTime, AverageQLength;

Console.WriteLine(""The simulation statistics are:');

Console_WriteLine(" ");

Console_WriteLine($"The maximum queue length was:
{Stats[MAX_Q_LENGTH]} buyers™);

Console _WriteLine($"'The maximum waiting time was: {Stats[MAX_WAIT]}
time units™);

Console._WriteLine($"{BuyerNumber} buyers arrived during
{SimulationTime} time units™™);

AverageWaitingTime = Math.Round((double)Stats[TOTAL_WAIT] /
BuyerNumber, 1);

Console _WriteLine($"The average waiting time was:
{AverageWaitingTime} time units™);

if (Stats[TOTAL_Q_OCCURRENCE] > 0)

{

AverageQLength = Math._.Round((double)Stats[TOTAL_Q] /
Stats[TOTAL_Q OCCURRENCE], 2);
Console.WriteLine($"The average queue length was: {AverageQLength}

buyers'™);

}

Console _WriteLine($"{Stats[TOTAL_NO_WAIT]} buyers did not need to
queue™);

Console._WriteLine($"{Stats[TOTAL_SHUNS]} buyers shunned the queue');
//Q16 MP7

}

17

public static void ResetDataStructures(int[] Stats, int[,] Tills, Q Node[]
BuyerQ)
{
for (int i = @; i <= 9; i++)
{
Stats[i]
}
for (int Count = @; Count <= MAX_TILLS; Count++)
{
for (int i= @; i <= 2; i++)
{
Tills[Count, 1i]
}
Tills[Count, 3] = 7 - Count; // Q17 MP1, MP3, MP4
}
for (int 1 = @; i < MAX_Q _SIZE; i++)
{
BuyerQ[i].BuyerID = BLANK;
BuyerQ[i].WaitingTime = O;
BuyerQ[i].ItemsInBasket = 0;
}
}

0;

0;

35

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

public static void ChangeSettings(ref int SimulationTime, ref int NoOfTills,
int[,] Tills) // Q17 MP5 part
{
SimulationTime = 10;
NoOfTills = 2;
Console.WriteLine("Settings set for this simulation:");
Console.WriteLine("=================================");
Console.WriteLine($"Simulation time: {SimulationTime}");
Console.WriteLine($"Tills operating: {NoOfTills}");
Console.WriteLine("=================================");
Console.WriteLine();
Console.Write("Do you wish to change the settings? Y/N: ");
string Answer = Console.ReadlLine();
if (Answer == "Y")
{
Console.WriteLine($"Maximum simulation time is {MAX_TIME} time units");
Console.Write("Simulation run time: ");
SimulationTime = Convert.ToInt32(Console.ReadLine());
while (SimulationTime > MAX_TIME || SimulationTime < 1)
{
Console.WriteLine($"Maximum simulation time is {MAX_TIME} time units");
Console.Write("Simulation run time: ");
SimulationTime = Convert.ToInt32(Console.ReadLine());
}
Console.WriteLine($"Maximum number of tills is {MAX_TILLS}");
Console.Write("Number of tills in use: ");
NoOfTills = Convert.ToInt32(Console.ReadlLine());
while (NoOfTills > MAX_TILLS || NoOfTills < 1)
{
Console.WriteLine($"Maximum number of tills is {MAX_TILLS}");
Console.Write("Number of tills in use: ");
NoOfTills = Convert.ToInt32(Console.ReadlLine());
}
for (int count = 1; count <= NoOfTills; count++) // Q17 MP6
{
Console.WriteLine($"Enter operator speed for till {count}.");
Console.Write($"Default value is {Tills[count, 3]} :"); // Q17 MP7
Tills[count, 3] = Convert.ToInt32(Console.ReadLine()); // Q17 MP8
}
}
}

public static void CalculateServingTime(int[,] Tills, int ThisTill, int
NoOfItems)
{
int ServingTime = (NoOfItems / Tills[ThisTill, 3]) + 1; // Q17 MP2
Tills[ThisTill, TIME_SERVING] = ServingTime;
Console.WritelLine($"{ThisTill,6}{ServingTime,6}");
}

public static void QueueSimulator()
{
int BuyerNumber = 0;
int QLength = 0;
int[] Stats = new int[10];
int[,] Tills = new int[MAX_TILLS + 1, 4]; // Q17 MP4;
int[,] Data = new int[MAX_TIME + 1, 2];

36

PMT

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

PMT

Q_Node[] BuyerQ = new Q_Node[MAX_Q_SIZE];

int SimulationTime = 0;

int NoOfTills = 0;

int TimeToNextArrival;

int ExtraTime;

int TimeUnit;

ResetDataStructures(Stats, Tills, BuyerQ);

ChangeSettings(ref SimulationTime, ref NoOfTills, Tills); // Q17 MP5 part

18

public static void ServeBuyerExpress(Q_Node[] BuyerQ, ref int QLength, int[]
Stats, int[,] Tills)
{
string BuyerID;
int WaitingTime, Items;
int pos = 9;
while (pos < QLength - 1 & BuyerQ[pos].ItemsInBasket > 9) // Q18 MP2 MP5
pos += 1;
if (BuyerQ[pos].ItemsInBasket < 10)
{
BuyerID = BuyerQ[pos].BuyerID; // Q18 MP6
WaitingTime = BuyerQ[pos].WaitingTime;
Items = BuyerQ[pos].ItemsInBasket;
for (int Count = pos; Count <= QLength; Count++) // Q18 MP3 MP7
{
BuyerQ[Count].BuyerID = BuyerQ[Count + 1].BuyerID;
BuyerQ[Count].WaitingTime = BuyerQ[Count + 1].WaitingTime;
BuyerQ[Count].ItemsInBasket = BuyerQ[Count + 1].ItemsInBasket;
}
BuyerQ[QLength].BuyerID = BLANK;
BuyerQ[QLength].WaitingTime = 0;
BuyerQ[QLength].ItemsInBasket = 9;
QLength -= 1;
Console.Write($"{BuyerID,17}"); // Q18 MP8
UpdateStats(Stats, WaitingTime); // Q18 MP9
CalculateServingTime(Tills, ©, Items); // Q18 MP10
}
}

public static void OutputTillAndQueueStates(int[,] Tills, int NoOfTills, Q Node[]
BuyerQ, int QLength)
{
for (int i = @; i <= NoOfTills; i++) // Q18 MP12
{
Console.WriteLine($"{i,36}{Tills[i, TIME_IDLE],5}{Tills[i,
TIME_BUSY],5}{Tills[i, TIME_SERVING],6}");

Console.WriteLine(" ** Start
of queue **");

for (int i = @; i < QLength; i++)

{

Console.WriteLine($"{BuyerQ[i].BuyerID,57}{BuyerQ[i].WaitingTime,7}{BuyerQ[i].Ite
msInBasket,6}");

}

Console.WriteLine(" *** End
of queue ***");

Console.WriteLine("-------------“--“"- oo

------------ ")

12

37

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

public static void Serving(int[,] Tills, ref int NoOfTills, Q_Node[] BuyerQ,

ref int QLength, int[] Stats)
{
int TillFree;
string BuyerID = "";
int WaitingTime = ©;
int ItemsInBasket = 0;
if (QLength > @) // Q18 MP1

if (Tills[e, TIME_SERVING] == @) // Q18 MP11

{
ServeBuyerExpress(BuyerQ, ref QLength, Stats, Tills); // Q18 MP4

}
}
TillFree = FindFreeTill(Tills, NoOfTills);
while (TillFree != -1 && QLength > 0)

{
ServeBuyer(BuyerQ, ref QLength, ref BuyerID, ref WaitingTime, ref
ItemsInBasket);
UpdateStats(Stats, WaitingTime);
CalculateServingTime(Tills, TillFree, ItemsInBasket);
TillFree = FindFreeTill(Tills, NoOfTills);
}
IncrementTimeWaiting(BuyerQ, QLength);
UpdateTills(Tills, NoOfTills);
if (QLength > 0)
{
Stats[TOTAL_Q_OCCURRENCE] += 1;
Stats[TOTAL_Q] += QLength;
}
if (QLength > Stats[MAX_Q LENGTH])

{
Stats[MAX_Q_LENGTH] = QLength;

}
OutputTillAndQueueStates(Tills, NoOfTills, BuyerQ, QLength);

PMT

38

PMT

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

Java
04 |1 Console.write("Enter an integer: '); 8
int numberl = Integer.parselnt(Console.readLine()); // MP1
Console.write("Enter another integer: ');
int number2 = Integer.parselnt(Console.readLine());// MP2
int number;
if (numberl > number2) { // MP3
number = numberl / number2;
} else {
number = number2 / numberl; // MP4
}
int count = O;
while (count != number) { // MP5
count++;
if (count % 10 == 0) { // MP6
Console.write("'X™);
} else {
if (count ¥ 5 ==0) { // MP7
Console.write("'V'");
} else {
Console.write('/™); // MP8
}
}
b5
16 | 1 // indices for Stats data structure 7

final int MAX Q LENGTH = 0O;

final int MAX WAIT = 1;

final int TOTAL_WAIT = 2;

final int TOTAL Q = 3;

final int TOTAL_Q OCCURRENCE = 4;
final int TOTAL_NO WAIT = 5;

final int TOTAL_SHUN = 6; // Q16 MP1

int[] buyerArrives(int[][] data, Q Node[] buyerQ, int gLength, int
buyerNumber, int noOfTills, int[] stats) {
if (gqLength < 5) { // QP16 MP2
Console.writeLine(String.format("" B%d(%d)'", buyerNumber,
data[buyerNumber][I1TEMS]));
gLength = buyerJoinsQ(data, buyerQ, qgLength, buyerNumber);

} else {
if (noOFfTills < MAX_TILLS) { // QP16 MP5
noOFTil Is++; // QP16 MP6
}

stats[TOTAL_SHUN]++; // Q16 MP3
Console.writeLine(String.format("™ B%d shuns the queue’,
buyerNumber)); 7/ QP16 MP4

return new int[] { gLength, noOfTills };
}

void outputstats(int[] stats, int buyerNumber, int simulationTime) {
Console.writeLine("The simulation statistics are'")
Console.writeLine('==============================="") ;
Console.writeLine(String.format("'The maximum queue length was: %d
buyers™, stats[MAX_Q LENGTH]));
Console.writeLine(String.format("The maximum waiting time was: %d
time units", stats[MAX_WAIT]));
Console.writeLine(String.format("'%d buyers arrived during %d time
units', buyerNumber, simulationTime));

39

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

double averagewaitingTime =
(double)Math.round((double)stats[TOTAL_WAIT] / buyerNumber *10)/10;

Console.writeLine(String.format("'The average waiting time was: %.1F
time units", averagewaitingTime));

if (stats[TOTAL_Q_OCCURRENCE] > 0) {

double averageglLength = (double)Math.round((double)stats[TOTAL_Q]

/ stats[TOTAL_Q OCCURRENCE] * 100)/100;
Console.writeLine(String.format("'The average queue length was:

%.2F buyers', averageqlLength));

3

Console.writeLine(String.format("'%d buyers did not need to queue",
stats[TOTAL_NO _WAIT]));

Console.writeLine(String.format("'%d buyers shunned the queue’,
stats[TOTAL_SHUN])); // QP16 MP7

b5
17 public void resetDataStructures(int[] stats, int[][] tills, Q Node[]
buyerQ) {
for (int i = 0; i <=9; i++) {
stats[i] = O;
by
for (int count = 0; count <= MAX TILLS; count++) {
for (int i = 0; 1 <= 2; i++) {
tills[count][i] = O;
}
tills[count][3] = 7 - count; // Q17 MP1 MP3
by
for (int i = 0; 1 < MAX_Q _SIZE; i++) {
buyerQ[i] = new Q_Node();
}

int[] changeSettings(int[][] tills) { // Q17 MP5 part
int simulationTime = 10;
int noOfTills = 2;
Console.writeLine('Settings set for this simulation:');
Console_writeLine(":::::::::::::::::::::::::::::::::");
Console.writeLine(String.format("Simulation time: %d",
simulationTime));
Console.writeLine(String.format("Tills operating: %d", noOfTills));
Console_writeLine(":::::::::::::::::::::::::::::::::");
Console.writeLine();
Console.write("'Do you wish to change the settings? Y/N: ");
String answer = Console.readLine();
if (answer.equals("Y™)) {
Console.writeLine(String.format("'Maximum simulation time is %d
time units™, MAX_TIME));
Console.write("'Simulation run time: ');
simulationTime = Integer.parselnt(Console.readLine());
while (simulationTime > MAX_TIME || simulationTime < 1) {
Console.writeLine(String.format("'Maximum simulation time is
%d time units", MAX_TIME));
Console.write('Simulation run time: ");
simulationTime = Integer.parselnt(Console.readLine());
¥
Console.writeLine(String.format(*'"Maximum number of tills is %d",
MAX_TILLS));
Console.write("Number of tills in use: ");
noOfTills = Integer.parselnt(Console.readLine());
while (noOfTills > MAX_TILLS || noOfTills < 1) {
Console.writeLine(String.format('Maximum number of tills is
%d", MAX_TILLS));

40

PMT

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

PMT

till %d, the current till speed is %d:", i, tills[i][3]1)); 7/ Q17 MP7

noOfltems) {

Q17 MP2

servingTime));

extraTime;

Console.write("Number of tills in use: ");
noOfTills = Integer.parselnt(Console.readLine());

3
for (int i = 1; 1 <= noOfTills; i++) { // QP17 MP6
Console.writeLine(String.format("'Enter the till speed for

tills[i][3] = Integer.parselnt(Console.readLine()); // Q17

}
+

return new int[] { simulationTime, noOfTills };

void calculateServingTime(int[][] tills, int thisTill, int
int servingTime = (noOfltems / tills[thisTill][3]) + 1; //

tills[thisTill][TIME_SERVING] = servingTime;
Console.writeLine(String.format("%6d%6d™, thisTill,

public QueueSimulator() {
int buyerNumber = 0, gLength = 0, simulationTime, noOfTills,

int[] stats = new int[10];

int[][] tills = new int[MAX_TILLS+1][4]; // Q17 MP4
int[][] data = new int[MAX TIME+1][2];

Q_Node[] buyerQ = new Q_Node[MAX_Q_ SIZE];
resetDataStructures(stats, tills, buyerQ);

int[] settings = changeSettings(tills); // Q17 MP5 part

18

tilIs[i][TIME_IDLE], tills[i][TIME_BUSY], tills[i][TIME_SERVING])):

** Start of queue **');

buyerQ[i].-waitingTime, buyerQ[i].itemsInBasket));

*** End of queue ***');

int serveBuyerExpress(int[][] tills, Q_Node[] buyerQ, int gLength, int[]
stats)

;oid outputTillAndQueueStates(int[][] tills, int noOfTills, Q Node[] 12
buyerQ, int qLength) {

for (int 1 = 0; 1 <= noOfTills; i++) { // Q18 MP12
Console.writeLine(String.format("'%36d%5d%5d%6d", i,

}

Console.writeLine(™

for (int 1 = 0; 1 < gLength; i++) {
Console.writeLine(String.format("%57s%7d%6d', buyerQ[i]-buyerliD,

Console.writeLine("

boolean foundUnderlOltems = false;
int buyerNumber = -1;
while (!foundUnderlOltems && buyerNumber < gLength - 1) { // Q18 MP2,

buyerNumber += 1;

if (buyerQ[buyerNumber].itemsInBasket < 10) {
foundUnderlOltems = true;

by

Y|

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2024

MP3, MP7

1] . itemsInBasket;

}

int[] serving(int[][] tills, int noOfTills, Q Node[] buyerQ, int gLength,
int[] stats) {

// Q18 MP4
}
}
tillFree = findFreeTill(tills, noOfTills);
while (tillFree !'= -1 && glLength > 0) {

}
if (foundUnder1Oltems) { // Q18 MP6
String thisBuyerlID = buyerQ[buyerNumber].buyerlD;
int thisBuyerWaitingTime = buyerQ[buyerNumber].waitingTime;
int thisBuyerltems = buyerQ[buyerNumber].itemslnBasket;
for (int count = buyerNumber; count < gLength; count++) { // Q18

buyerQ[count] .buyerID = buyerQ[count + 1].buyerlD;
buyerQ[count] .waitingTime = buyerQ[count + 1].waitingTime;
buyerQ[count].itemsInBasket = buyerQ[count +

}

buyerQ[gLength].buyerID = BLANK;

buyerQ[gLength].waitingTime = O;
buyerQ[gLength].itemslnBasket = O;

gLength -= 1;

Console.write(String.format(*%17s", thisBuyeriD)); // Q18 MP8
updateStats(stats, thisBuyerWaitingTime); //MP9
calculateServingTime(tills, 0, thisBuyerltems); // Q18 MP10

}
return gLength;

int tillFree, waitingTime, itemsInBasket;
if (gLength > 0) { // Q18 MP1
it (tills[O][TIME_SERVING] == 0) { 7/ Q18 MP 11
gLength = serveBuyerExpress(tills, buyerQ, gLength, stats);

String[] buyerinfo = serveBuyer(buyerQ, gLength);
gLength = Integer.parselnt(buyerinfo[0]);
String buyerlID = buyerinfo[1];
waitingTime = Integer.parselnt(buyerinfo[2]);
itemsInBasket = Integer.parselnt(buyerinfo[3]);
updateStats(stats, waitingTime);
calculateServingTime(tills, tillFree, itemsinBasket);
tillFree = findFreeTill(tills, noOfTills);

}

incrementTimeWaiting(buyerQ, gLength);

updateTills(tills, noOfTills);

if (gLength > 0) {
stats[TOTAL_Q_OCCURRENCE] += 1;
stats[TOTAL_Q] += gLength;

}

if (gLength > stats[MAX_Q LENGTH]) {
stats[MAX_Q LENGTH] = gLength;

}

outputTillAndQueueStates(tills, noOfTills, buyerQ, glLength);
return new Int[] { noOfTills, glLength };

42

